一场围绕“太空算力”与“太空能源”的新竞赛最近正在全球升温。
钙钛矿、核电站、激光输电全面开战
苏联天文学家尼古拉·卡尔达舍夫按照能源利用能力,将文明划分为Ⅰ型(掌控行星能源)、Ⅱ型(收集恒星系统能量)和Ⅲ型(控制银河系能源)三个等级。最新评估显示,人类文明还处于I型,仅0.73级左右。
虽然人类还不能完全掌控地球上的能源,但是收集和利用恒星能源已经提上日程,涉及两个层面:
从太空发电看,目前广泛采用的砷化镓(GaAs)太阳能电池面临高成本难题,亟待寻找更具性价比的方案;
从太空输电看,太空发电通过无线技术传送到地球,突破了地理和气候的限制,将引发能源革命。
“太空算力”的未来是美好的,但不得不面对能源困局的现实。
由于太空无法接入地面电网,光伏是能源供给的最重要方式。目前,太空能源的主力是砷化镓(GaAs)太阳能电池,以其高转化效率、耐辐射等特性,广泛应用于航天器、空间站等领域。
但砷化镓制备的原料稀缺、工艺复杂,导致价格昂贵,素有“半导体贵族”之称。公开资料显示,“天和”核心舱134平方米的砷化镓太阳翼,成本高达1.67亿元,折合125万元/平米,比硅基电池贵几十倍,显然无法满足“太空算力”大规模部署的要求。
天和核心舱大型柔性太阳能电池翼示意图,引自中国载人航天
晶硅电池是当前地面电站的主流,但在AM0(太空环境)下效率仅为14-18%,远低于砷化镓30%的光电转换效率;抗辐射性能差,太空环境中效率衰减快,并不适合在太空中使用。
钙钛矿电池作为新一代太阳能电池技术的代表,兼具砷化镓电池的高效率、耐辐射特性和晶硅电池的低成本优势,成为太空应用的理想选择。
近年来,我国钙钛矿产业化进程加速,量产线迈入GW级新阶段,光电转换效率屡屡刷新。更重要的是,钙钛矿电池可与晶硅电池结合形成钙钛矿-晶硅叠层电池,理论效率可达43%。
引自中国光伏行业协会






























问 太空AI算力中心 能源来自哪里?